
204 13 Case Study: Cache Efficient Algorithms for Matrix Operations

two elements that are direct neighbours of the elements accessed in the previous op-
eration. To extend this simple 3×3-scheme to a multiplication algorithm for larger
matrices, we need

• a 2D Peano order that defines the data structure for the matrix elements;
• a recursive extension of the 3× 3-scheme in equation 13.2, which is basically

obtained by using matrix blocks instead of elements;
• a concept for matrices of arbitrary size, as the standard Peano order will only

work for matrices of size 3k×3k.

The 2D Peano order for the elements is derived in a straightforward manner from
the iterations of the Peano curve. The respective construction is illustrated in Figure
13.5. The pattern symbols P, Q, R, and S now denote a numbering scheme for the
corresponding subblock in the matrix.

P

P

P

P

Q Q

R

S

R

P Q
Q

P

Q

Q

P

QS

R

S

R
R

R

R

R

S S

P

Q

P

S
S

R

S

S

R

S

Q

P

Q

Fig. 13.5 Recursive construction of the Peano element order to store matrices.

13.3.1 Block-recursive Peano Matrix Multiplication

Let’s now formulate the 3×3 multiplication scheme of equation (13.2) to a scheme
for matrices in Peano order. In a first step, we write the matrices as 3× 3 block
matrices: PA0 RA5 PA6

QA1 SA4 QA7
PA2 RA3 PA8

 PB0 RB5 PB6
QB1 SB4 QB7
PB2 RB3 PB8

=

 PC0 RC5 PC6
QC1 SC4 QC7
PC2 RC3 PC8

 . (13.3)

Here, we named each matrix block according to its numbering scheme (see Fig-
ure 13.5), and indicated the name of the global matrix and the relative position of
the block in the Peano order as indices. The element operations of equation 13.2


